just some kid

heckacute:

If you get your blood drawn for tests at a doctor’s office and you ask for it back, they have to give it to you when they’re finished and then you can do whatever you want with it. It’s medical blood. 

peashooter85:

Ancient Roman Nanotechnology —- The Lycurgus Cup
In the 1950’s the British Museum acquired one of the most amazing archaeological finds from Ancient Rome.  The Lycurgus Cup is a beautiful 1,600 year old goblet crafted from glass by the Ancient Romans.  The cup depicts the punishment of Lycurgus, a mythical king who was ensnared in vines for committing evil acts against the Greek god Dionysus.  The craftsmanship and artwork of the cup are certainly amazing on their own. During the age of the Roman Empire the Romans were master glassmakers, producing some of the finest pieces of glassware in history.   However the Lycurgus cup has one incredible property that goes far beyond traditional glassmaking.  When exposed to light, the cup turns from jade green into a bright, glowing red color.  For decades historians, archaeologists, and scientists had no idea why this occurred or how the Romans made the cup with such light changing properties.  Then in 1990 a small fragment of the cup was examined by scientists under a microscope.  What they discovered is truly amazing.
The Lycurgus cup is not only made of glass, but is impregnated with thousands of small particles of gold and silver.  Each of the gold and silver particles are less than 50 nano-meters in diameter, less than one-one thousandth the size of a grain of table salt.  When the cup is hit with light, electrons belonging to the metal flecks vibrate in ways that alter the color depending on the observer’s position.  What is even more amazing is that the addition of the particles to the glass was no accident or coincidence.  The Romans would have had to have known the exact mixture and density of particles needed to give the cup light changing properties.  This would have been done without the aid of a microscope, without the knowledge of atomic theory, and 1,300 years before Newton’s Theory of Colors.
Today the Lycurgus Cup has profound affects on modern nanotechnology.  After studying the cup, researchers and engineers are looking to adapt the technology for modern purposes.  A researcher from the University of Illinois named Gong Gang Liu is currently working on a device which uses the same technology to diagnose disease.  Another application of the technology is a possible device which can detect dangerous materials being smuggled onto airplanes by terrorists.  
The legacy of Ancient Rome continues.  Arena’s, baths, arches, and  nanotechnology. 

peashooter85:

Ancient Roman Nanotechnology —- The Lycurgus Cup

In the 1950’s the British Museum acquired one of the most amazing archaeological finds from Ancient Rome.  The Lycurgus Cup is a beautiful 1,600 year old goblet crafted from glass by the Ancient Romans.  The cup depicts the punishment of Lycurgus, a mythical king who was ensnared in vines for committing evil acts against the Greek god Dionysus.  The craftsmanship and artwork of the cup are certainly amazing on their own. During the age of the Roman Empire the Romans were master glassmakers, producing some of the finest pieces of glassware in history.   However the Lycurgus cup has one incredible property that goes far beyond traditional glassmaking.  When exposed to light, the cup turns from jade green into a bright, glowing red color.  For decades historians, archaeologists, and scientists had no idea why this occurred or how the Romans made the cup with such light changing properties.  Then in 1990 a small fragment of the cup was examined by scientists under a microscope.  What they discovered is truly amazing.

The Lycurgus cup is not only made of glass, but is impregnated with thousands of small particles of gold and silver.  Each of the gold and silver particles are less than 50 nano-meters in diameter, less than one-one thousandth the size of a grain of table salt.  When the cup is hit with light, electrons belonging to the metal flecks vibrate in ways that alter the color depending on the observer’s position.  What is even more amazing is that the addition of the particles to the glass was no accident or coincidence.  The Romans would have had to have known the exact mixture and density of particles needed to give the cup light changing properties.  This would have been done without the aid of a microscope, without the knowledge of atomic theory, and 1,300 years before Newton’s Theory of Colors.

Today the Lycurgus Cup has profound affects on modern nanotechnology.  After studying the cup, researchers and engineers are looking to adapt the technology for modern purposes.  A researcher from the University of Illinois named Gong Gang Liu is currently working on a device which uses the same technology to diagnose disease.  Another application of the technology is a possible device which can detect dangerous materials being smuggled onto airplanes by terrorists.  

The legacy of Ancient Rome continues.  Arena’s, baths, arches, and  nanotechnology. 

(Source: smithsonianmag.com, via humanoidhistory)

heckacute:

I just couldn’t be in that relationship anymore. She was too high maintenance for me. She refused to eat her own fingernail clippings. She just threw them away saying that they “weren’t food” and that I “am crazy.” I can’t stand that kind of wastefulness. 

earth-song:

A few months ago David Chambon has been working on a series of amazing photographs of insects covered in dew drops. If the “creativity” of the phenomenon is due to the nature only, Chambon takes credit for putting in focus, with exemplary photographic expertise, these little natural wonders.

Check out some images below and visit his portfolio for more.

(via megacosms)

astronomicalwonders:

Veil complex Panorama - NGC 9662 

The Veil Nebula is a cloud of heated and ionized gas and dust in the constellation Cygnus. It constitutes the visible portions of the Cygnus Loop (radio source W78, or Sharpless 103), a large but relatively faint supernova remnant. The source supernova exploded some 5,000 to 8,000 years ago, and the remnants have since expanded to cover an area roughly 3 degrees in diameter (about 6 times the diameter, or 36 times the area, of the full moon). The distance to the nebula is not precisely known, but Far Ultraviolet Spectroscopic Explorer (FUSE) data supports a distance of about 1,470 light-years.

Credit: Klaatu2u/Wikipedia